2023年度 数学Ⅲシラバス

教科名	科目名	学年	単位数	クラス	使用教科書
数学	数学Ⅲ	3	5	特進クラス対象	新編 数学皿(数研出版)

1 科目の目標と評価の観点

1,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,								
目標	平面上の曲線と複素数平面、極限、微分法及び積分法についての理解を深め、知識の習得と技能の習熟を図り							
	事象を数学的に考察し表現する能力を伸ばすとともに,それらを積極的に活用する態度を育てる。							
	関心・意欲・態度	数学的な見方や考え方	数学的な技能	知識•理解				
	平面上の曲線と複素数平	事象を数学的に考察し表	平面上の曲線と複素数平	平面上の曲線と複素数平				
	面,極限,微分法及び積分	現したり、思考の過程を	面,極限,微分法及び積分	面,極限,微分法及び積分				
	法に関心をもつととも	振り返り多面的・発展的	法において, 事象を数学	法における基本的な概				
	に、それらを事象の考察	に考えたりすることなど	的に表現・処理する仕方	念, 原理・法則などを体系				
評価の観点	に積極的に活用して数学	を通して, 平面上の曲線	や推論の方法などの技術	的に理解し,知識を身に				
	的論拠に基づいて判断し	と複素数平面, 極限, 微分	を身に付けている。	付けている。				
	ようとする。	法及び積分法における数						
		学的な見方や考え方を身						
		に付けている。						

2 学習計画と観点別評価規準

		学習内容	学習内容	観点別評価規準		考
学	月	章名	節名	〔関〕:関心・意欲・態度	教科書	查
期		(配当時間)	(配当	〔見〕: 数学的な見方や考え方	該当箇所	範
		学習のねら	時間)	〔技〕: 数学的な技能		囲
		61	項目名	〔知〕:知識•理解		
			(配当			
			時間)			
1	4	第1章	1 複素数	複素数平面を考えることにより、複素数の図形的側面が明らかに	p.6~12	
学	月	複素数平面	平面 (5)	なることを理解しようとする。〔関〕		
期		(23)		複素数平面の定義を理解している。〔知〕	例 1、練習 1	
				共役複素数を求めることができる。〔知〕	練習2	
		複素数平面に		複素数平面上で,実軸,原点,虚軸に関して対称な点を表す複素数	練習3	
		ついて理解		が,もとの複素数に対してどのような数であるか,理解している。		
		し、それらを		〔知〕		
		事象の考察に		複素数の絶対値の定義および図形的意味を理解している。〔見〕	例 2	
		活用できるよ		〔知〕	練習4,5	
		うにする。		複素数の和,差,実数倍の,複素数平面における図形的意味を理解	例 3、例題 1	
				している。〔見〕〔知〕	練習6~8	

	ı		ı
		共役複素数の性質を理解し、また、それらを証明問題に利用するこ	例 4、例題 2
		とができる。〔技〕〔知〕	練習9,10
	2 複素数	極形式の有用性を理解し、乗法と除法の図形的意味を理解しよう	p.13~15
	の極形式	とする。〔関〕	
	(6)	極形式を利用することで、複素数の乗法、除法の図形的意味が明ら	p.16, 17
		かになることを理解している。〔見〕	
		極形式の定義を理解し、複素数を極形式で表すことができる。〔知〕	例題3
			練習 11, 12
		複素数の積,商の絶対値,偏角の性質を理解し,それらを求めるこ	例 5
		とができる。〔知〕	練習 13, 14
		複素数の乗法,除法の図形的意味を理解し,活用することができ	例 6、例題 4
		る。〔技〕〔知〕	練習 15, 16
	3 ド·モ	ド・モアブルの定理の有用性に興味・関心をもち,活用しようとす	p.18~21
	アブルの定	る。〔関〕	
	理(5)	ド·モアブルの定理を利用して,複素数のn乗を求めることができ	例 7、例題 5
		る。〔知〕	練習 17
			例8、応用例
		 n 乗根を求めることができる。〔見〕〔知〕	題 1、練習
			18, 19
	4 複素数	 複素数平面上の円, 直線を複素数の方程式で表すことに興味・関心	p.22~26
	と図形(4)	 をもち,種々の図形の性質を,複素数を利用して考察しようとす	
		る。〔関〕	
			練習 20, 21
		ることができる。〔見〕〔知〕	
			例 9、応用例
		ることや計算で求めることができる。〔見〕〔知〕	題 2, 3、練
			習 22~25
			例題 6. 7
		考察できることを理解し、それを活用することができる。〔見〕〔知〕	練習 26, 27
	補充問題	複素数zについて,zが実数であるための必要十分条件,zが純虚	補充問題 1
	(1)	数であるための必要十分条件を理解している。〔知〕	1107 01-0722 1
	コラム	【レポート】「3点の位置関係」	p.27 コラム
		複素数平面上の 3 点の位置関係を、複素数の計算を利用して調べ	P.C1 - 1 1 1 1
		はうとする態度がある。〔関〕	
	 章末問題(2		p.28
第2章		·/	٧.٤٠
弟と草 式と曲線	1 放物線	スロップ (187) 2 次曲線を解析幾何学的な方法で考察することに意欲的に取り組	第2章全体
(34)	(3)	2 次曲線を解析機両子的な月法でも祭りることに思め的に取り組 もうとする。〔関〕	カム 早土仲
(04)	(3)		n 30
平面上の曲線		軌跡の考えを利用して、放物線の方程式を導くことができる。〔見〕	p.30
十回上の田城		放物線を標準形で表すことができる。〔技〕	p.30

5 月

La, , , , , , , , , +			151 4 6	İ
がいろいろな		放物線の方程式から,概形をかき,焦点,準線を求めることができ	例 1, 2	
式で表される		る。〔技〕〔知〕	練習 1,2	
ことについて		焦点が y 軸上にある放物線について,概形をかき,焦点,準線を求 	練習3	
理解し, それ 		めることができる。〔技〕〔知〕		
らを事象の考	2 楕 円	軌跡の考えを利用して、楕円の方程式を導くことができる。〔見〕	p.32	
察に活用でき	(5)	楕円の方程式から、概形をかき、焦点、長軸の長さ、短軸の長さを	例3	
るようにす		求めることができる。〔技〕〔知〕	練習 4	
る。		焦点の座標などから、楕円の方程式を求めることができる。〔知〕	例題 1、練習 5	
		焦点が y 軸上にある楕円について,概形をかき,焦点,長軸の長	練習6	
		さ、短軸の長さを求めることができる。〔技〕〔知〕		
		軌跡の考えを利用して,条件を満たす楕円の方程式を求めること	例 4、応用例題	
		ができる。〔見〕	1、練習7,8	
	3 双曲線	動跡の考えを利用して、双曲線の方程式を導くことができる。〔見〕	p.37	
	(4)	双曲線の方程式から、概形をかき、焦点、頂点、漸近線を求めるこ	例 5	ф
		 とができる。〔技〕〔知〕	練習 9	間
			練習 11	考
		 近線を求めることができる。〔技〕〔知〕		查
	4 2 次曲	 曲線 F(x−p, y−q)=0 は,曲線 F(x, y)=0 を平行移動したもの	例 6	
	線の平行移	であることが理解できる。〔見〕	練習 12, 13	
	動 (2)		例題 2	
		ることができる。〔技〕〔知〕	練習 14	
	5 2 次曲	2 次曲線と直線の位置関係を,2 次方程式の実数解の個数で考察	例題3	
	線と直線		練習 15	
	(3)	2 次曲線の接線や接点を 2 次方程式の実数解を利用して求めるこ	応用例題 2	
	(-)	とができる。〔知〕	練習 16	
		2 次曲線の接線の方程式を求めることができる。〔知〕	応用例題 2	
		研究 2次曲線の接線の方程式	練習 16	
		研究 2 次曲線の性質	INCE TO	
	補充問題	【レポート】「反比例のグラフ」	p.49 コラム]
	(1)	反比例のグラフが双曲線であることに、興味・関心をもち、自ら考	p. 10 1) 1	
	コラム	察しようとする。(関)		
	3,24	2 次曲線が円錐と平面との交線であることに興味・関心をもつ。	 前見返し	
			ال عدادوة	
	第2節 媒	「 ^{スプ} !介変数表示と極座標(14)]
	第2即 妹	対象数表がと	練習 17	Į Į
	関係 単縁の 関係 単葉 は 単葉 は 単元 変	媒月复数表がで表された曲縁を、媒月复数を消去した式で表すと とができる。〔知〕	水色 1 /	
	以		例題 4	!
	(5)	放物線の頂点の軌跡を,媒介変数を利用して求めることができる。 〔知〕	例起 4 練習 18	Į Į
	(5)			!
		2 次曲線を媒介変数表示で表すことができる。〔技〕〔知〕 	練習 19,	Į Į
			20, 22	<u> </u>

6 月

		媒介変数表示で表された曲線を平行移動して得られる曲線の方程	応用例題3
		式を求めることができる。〔知〕	練習 23
		媒介変数表示で表された曲線の平行移動を一般的に取り扱うこと	p.53
		ができる。〔見〕	
		サイクロイドなど, x, y についての方程式では表しにくい曲線を	p.54
		 進んで考察しようとする。〔関〕	p.64 コラム
	7 極座標	平面上の点を表す様々な座標系があることに興味・関心をもつ。 直	p.55~61
	と極方程式	 交座標と極座標の関係に興味・関心をもち,積極的に相互の関係を	
	(6)	 考察しようとする。〔関〕	
			例 7,練習 25
	研究 2次	- 一一・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	例8、練習
	曲線を表	(知)	26
	す極方程	^^~~ 直交座標で表された点の極座標を求めることができる。〔見〕〔技〕	例 9
	式	[知]	· · · 練習 27
	•		例 10~12
		1760世紀を極力性式で表すことができる。 (知)	練習 28, 29
		直交座標で表された方程式を極方程式で表すことができる。〔見〕	例題 6
		[技] (知)	· 例と ・ ・ 練習30
			例題 7,8
		極力権以て扱いに力権以を直叉圧標に関する力権以て扱うこと ができる。〔見〕〔技〕〔知〕	· 例と 7, 8 · · · · · · · · · · · · · · · · · · ·
		2 次曲線の極座標表示を,離心率 e を用いて統一的に考察するこ	p.61 研究
		2 次面線の極度係表がを、配心率 e を用いて机一切に与祭すると とができる。〔見〕	p.01 m元
	0 72/12		p.62, 63
	8 コンピ	媒介変数表示や極方程式で表された曲線をコンピュータで描き,	p.62, 63
		それらを考察することに興味・関心をもつ。〔関〕	ITIL 4 C
	用 (2)	いろいろな曲線をコンピュータで描画し、その性質を考察できる。	例 13
		〔技〕〔知〕	練習 33, 34
	補充問題		p.64 コラム
	(1) コラム		
	章末問題(2		p.65, 66
第3章	1 分数関	分数関数の定義を理解し、グラフをかくことができる。〔知〕	練習 1
関 数	数(4)	分数関数 $y=\frac{k}{x-p}+q$ の表記について,グラフの平行移動ととも	例 1
(14)		x-p	練習2
		に理解し、考察することができる。〔見〕〔技〕	
簡単な分数関		分数関数 $y = \frac{ax+b}{cx+d}$ を $y = \frac{k}{x-p} + q$ の形に変形し、漸近線を求め	例題 1
数と無理関数		cx+d $x-p$	練習3
及びそれらの		てグラフをかくことができる。〔技〕	
グラフの特徴		分数関数のグラフと直線について, 共有点の座標の意味を考え, そ	応用例題 1
について理解		の求め方を考察しようとする。〔関〕	練習4
する。合成関		分数関数のグラフと直線の共有点の座標を、連立方程式の実数解	応用例題 1
数や逆関数の		 に読み替えることができる。〔見〕	練習 4

辛叶を理解し、「本立士和子を紹える		
意味を理解 連立方程式を解くる	ことで,分数関数のグラフと直線の共有点の座	応用例題 1
し, 簡単な場 標を求めることがで	できる。〔技〕〔知〕	練習4
合についてそ 分数不等式の解を,	グラフと直線の上下関係に読み替えることが	p.71
れらを求めできる。〔見〕		
る。 分数不等式の解の意	既を考え,グラフを用いて考察しようとする。	練習5
〔関〕		
グラフを利用するこ	ことで、分数不等式を解くことができる。〔技〕	練習5
〔知〕		
2 無理関 無理関数の定義を理	[解し,グラフをかくことができる。〔知〕	練習6
数 (3) 無理悶粉 $\sqrt{-\sqrt{a(x_0)}}$	 - p) の表記について, グラフの平行移動ととも	例題 2
無连肉数 y — \q	- かの表記について、グラブの平行を動ことも	練習7
に理解し,考察する	ることができる。〔見〕〔技〕	
無理悶料以一「食工」	$b \approx y = \sqrt{a(x-p)}$ の形に変形し,グラフをか	例題 2
無 上 房 数 y 一 Y 4 4 7	$v \neq y = \sqrt{u(x + p)}$ only $c \neq b = 0$, $c \neq y = 0$	練習7
くことができる。〔	技〕	
無理関数のグラフと	に直線について,共有点の座標の意味を考え,そ	応用例題 2
の求め方を考察しよ	うとする。〔関〕	練習8
無理関数のグラフと	こ直線の共有点の座標を, 連立方程式の実数解	応用例題 2
に読み替えることだ	「できる。〔見〕	練習8
連立方程式を解くる	ことで,無理関数のグラフと直線の共有点の座	応用例題 2
標を求めることがで	できる。〔技〕〔知〕	練習8
無理不等式の解を,	グラフと直線の上下関係に読み替えることが	p.75
できる。〔見〕		
無理不等式の解の意	歌味を考え,グラフを用いて考察しようとする。	練習 9
〔関〕		
グラフを利用するこ	ことで、無理不等式を解くことができる。〔技〕	練習9
〔知〕		
3 逆関数 逆関数,合成関数の	考え方に興味・関心を示し,具体的な問題に取	p.76~80
と合成関数 り組もうとする。〔	関〕	
(4) 逆関数の定義から,	逆関数の定義域・値域や性質を考察することが	p.76~79
できる。〔見〕		
2 つの関数を続けて	て作用させた関数を、合成関数という 1 つの関	08. q
数として考察するこ	ことができる。〔見〕	
逆関数の定義や求め	かる手順を理解し,種々の関数の逆関数を求め	例 2~4、例
ることができる。〔	技〕〔知〕	題 3、練習
		10~13
指数関数と対数関数	めが互いに逆関数となっていることを理解して	例3
いる。〔知〕		練習 11
合成関数の定義や変	Rめる手順を理解し,種々の関数の合成関数を	例題 4
求めることができる	3。〔技〕〔知〕	練習 16

期末

		T		T
		補充問題	【レポート】「y=x ³ の逆関数」	p.81 コラム
		(1)	y=x ³ の逆関数に興味を示し、そのグラフについて考察しようとす	
		コラム	る。〔関〕	
		章末問題(2)	p.82
	第4章	第1節 数	列の極限(13)	
7	極限	1 数列の	極限に関する表記および∞の記号について理解している。〔技〕	p.84~86
月	(29)	極限(4)		
			数列の極限値を求めることができる。〔知〕	例 1、練習 1
	数列や関数値		数列の収束,発散を調べ,極限を求めることができる。〔知〕	練習2
	の極限の概念		不定形の数列の式を,不定形を解消するように工夫して変形しよ	例3、例題1
	を理解し、そ		うとする。〔関〕	練習 4,5
	れらを事象の		不定形を解消するなど,数列の式を適切に変形することで,収束・	例 3、例題 1
	考察に活用で		発散を調べることができる。〔技〕	練習 4,5
	きるようにす		「はさみうちの原理」を用いて極限を求める方法に,興味・関心を	応用例題 1
	る。		もつ。〔関〕	練習 6
			数列の式の変形が容易でない場合、「はさみうちの原理」を用いて	応用例題 1
			極限を考察することができる。〔見〕〔知〕	練習6
		2 無限等	無限等比数列の収束・発散を利用して,様々な数列の極限を求める	例 4, 5、例
		比数列	ことができる。〔知〕	題 2、練習 7
		(3)		~9
			無限等比数列を、公比の値で場合分けし、その極限を考察すること	応用例題 2
			ができる。〔見〕	練習 10
			漸化式で表された数列の一般項を求め、数列の極限を求めること	応用例題 3
			ができる。〔技〕〔知〕	練習 11
		3 無限級	項を「無限に加える」ということを、数学的に定義する方法を理解	p.94
		数 (5)	しようとする。〔関〕	
			無限級数の表記について理解している。〔技〕	p.94
			無限級数の収束・発散を、部分和の極限を調べることで考察するこ	例題3
			とができる。〔見〕	練習 12
			無限級数,無限等比級数の定義を理解し,収束・発散について調べ	例題 3~5
			ることができる。〔知〕	練習 12~14
			繰り返しを含む図形的な問題に興味をもち,無限等比級数を利用	応用例題 4
			 して考察することができる。〔関〕〔見〕	練習 15
		補充問題	無限等比級数の知識を利用して,数学的に循環小数を分数で表す	補充問題 4
		(1)	 ことができる。〔見〕	
		コラム		p.101 コラ
			考察しようとする。〔関〕	
		第2節 関	 数の極限(14)	I
		4 関数の	極限の表記および∞の記号について理解している。〔技〕	p.102~108

考查

ı l					
			極 限 (1)	簡単な関数の x→a のときの極限を求めることができる。〔知〕	例 6、練習 17
			(4)	不定形の関数の式を,不定形を解消するように工夫して変形しよ	例7、例題7,
				うとする。〔関〕	8、練習 18,
					19
				不定形を解消するなど,関数の式を適切に変形することで,関数の	例7、例題7,
				極限を求めることができる。〔技〕	8、練習 18,
					19
				極限の等式を成り立たせる必要条件を求めて、その十分性を確認	応用例題 5
				することで関数の式の係数を決定することができる。〔見〕〔知〕	練習 20
				関数の右側極限、左側極限の考え方に興味・関心をもつ。〔関〕	p.107,108
				グラフを参考にしながら,関数の右側極限,左側極限,関数の極限	例 9~11
				の有無について考察することができる。〔見〕〔技〕〔知〕	練習 22, 23
			5 関数の	簡単な関数の x→±∞のときの極限を求めることができる。〔知〕	例 12、例題
			極 限 (2)		10、練習
			(3)		24, 28
				不定形の関数の式を,不定形を解消するように工夫して変形しよ	例題 9、応用
				うとする。〔関〕	例題 6、練習
					25, 26
				不定形を解消するなど,関数の式を適切に変形することで,関数の	例題 9
				極限を求めることができる。〔技〕	応用例題 6
					練習 25, 26
2	9		6 三角関	「はさみうちの原理」を用いて極限を求める方法に,興味・関心を	応用例題 7
学	月		数と極限	もつ。〔関〕	練習 30
期			(3)	関数の式の変形が容易でない場合,「はさみうちの原理」を用いて	応用例題 7
				極限を考察することができる。〔見〕〔知〕	練習 30
				$\lim rac{\sin x}{1}=1$ を利用して,三角関数を含む様々な関数の極限値を	例題 11
				$x \to 0$ x	応用例題8
				求めることができる。〔技〕〔知〕	練習 31, 32
			7 関数の	グラフをかくことで,様々な関数の連続,不連続を考察しようとす	例 14~17
			連続性(3)	る。〔関〕	
				定義に基づいて、様々な関数の連続性、不連続性を判定することが	例 14~17
				できる。〔技〕〔知〕	練習 33
				従来の定理とは異なる,存在定理として中間値の定理に興味・関心	p.121
				を示す。〔関〕	
				直観的に中間値の定理を理解し、それを用いて方程式の実数解の	例題 12
				存在を考察することができる。〔見〕〔知〕	練習 36
			補充問題	【レポート】「正 n 角形と円の面積」	p.122 コラ
			(1)	三角関数が現れる図形的な問題を、三角関数の極限を利用して考	Д
			コラム	察しようとする。〔関〕	
			章末問題(2)	p.123, 124
		第5章	第1節 導	関数(3)	

					_
	微分法	1 微分係	微分係数の図形的意味を考察しようとする。〔関〕	p.127	
	(24)	数と導関数	微分係数の 2 通りの表し方を理解し,その図形的意味を考察する	p.126, 127	
		(4)	ことができる。〔見〕		
	関数の積及び		微分可能性と連続性の関係について、興味・関心をもつ。〔関〕	p.127, 128	
	商の導関数に		微分係数,微分可能の定義と,その図形的意味を理解している。	p.126 ~	
	ついて理解		〔知〕	128	
	し, 関数の和,		連続性が微分可能性の必要条件ではあるが十分条件ではないこと	p.127, 128	
	差, 積及び商		を理解している。〔知〕		
	の導関数を求		微分可能性を,定義に基づいて考察することができる。〔見〕	例 2、練習 3	
	める。合成関		導関数を,微分係数から得られる新しい関数として理解すること	p.129	
	数の導関数に		ができる。〔見〕		
	ついて理解		導関数の種々の表記を理解している。〔技〕	p.129	
	し, 合成関数		導関数の定義を理解し、定義に基づいて微分することができる。	例3	
	の導関数を求		〔知〕	練習 4	
	める。三角関	2 導関数	様々な導関数の性質や計算方法に興味をもち,具体的な問題に取	p.130 ~	
	数,指数関数	の計算(6)	り組もうとする。〔関〕	138	
	及び対数関数		$(\mathbf{x}^{lpha})'=lpha\mathbf{x}^{lpha-1}$ において, $lpha$ の範囲が自然数,整数,有理数と拡張	p.131 ~	
	の導関数を求		されていくことに興味・関心を示す。〔関〕	138	
	める。		α の範囲を自然数,整数,有理数と拡張しながら, $(\mathbf{x}^{lpha})' = \alpha \mathbf{x}^{lpha-1}$	p.131 ~	
			を証明していく考え方や方法を理解している。〔見〕	138	
			α が有理数のとき、 $(x^{\alpha})' = \alpha x^{\alpha-1}$ が成立することを理解している。	p.138	
			〔知〕		
			導関数の性質, 積の導関数, 商の導関数, 合成関数の導関数, 逆関	p.130 ~	
			数の微分法を理解し、種々の導関数の計算に利用することができ	138	
			る。〔技〕〔知〕		
		補充問題	【レポート】「曲線 y=³√x の接線」	p.139 コラ	
		(1)	関数 $y=^3\sqrt{x}$ の $x=0$ における微分可能性と曲線 $y=^3\sqrt{x}$ の接線	厶	
		コラム	の関係に興味をもち,考察しようとする。〔関〕		
		第2節 い	ろいろな関数の導関数(11)		
)		3 いろい	三角関数の導関数を理解し、三角関数を含む種々の関数の導関数	例題3	
		ろな関	を計算できる。〔知〕	練習 13	
		数の導	自然対数の底 e を考える必要性に興味をもち,考察しようとする。	p.142,143	
		関 数	〔関〕		
		(5)	自然対数 e の定義と, 対数関数の導関数を理解し, 対数関数を含	例題 4, 5	
			む種々の関数の導関数を計算できる。〔知〕	練習 14~16	ф
		研究 対	指数関数の導関数を理解し,指数関数を含む種々の関数の導関数	例題 6	間
		数 微 分	を計算できる。〔知〕	練習 18	考
		法	対数微分法を利用して,複雑な関数を微分することができる。〔技〕	p.146 研究	查
		4 第n次	高次導関数の定義,表記を理解し,種々の関数の高次導関数を求め	例 10	
		導 関 数	ることができる。〔技〕〔知〕	練習 19	

10 月

_	,		1
	(2)	高次導関数の計算をするだけではなく, 第 n 次導関数の式の形を	例 10
		予想しようとする。〔関〕	練習 19, 20
		高次導関数の計算において,第 n 次導関数の形を予想することが	練習 20
		できる。〔見〕	
	5 曲線の	方程式 F(x, y) = O を関数(陰関数)とみる考え方を理解している。	p.148, 149
	方 程 式	〔知〕	
	と導関	陰関数 F(x, y) = O を微分する方法の簡便さに関心を示す。〔関〕	p.149
	数(3)		
		陰関数表示 F(x, y)=O を, 陽関数表示 y=f(x)としなくても微分	p.149
		できることを理解している。〔見〕	
		方程式 F(x, y) = O を関数とみて,合成関数の導関数を利用して微	例題 7
		分することができる。〔技〕	練習 22
		媒介変数tで表された関数の導関数を、tの関数として表すことが	例題8
		できる。〔技〕〔知〕	練習 23
	補充問題	【レポート】「整式と第 n 次導関数」	p.152 コラ
	(1)	整式と第 n 次導関数について,興味をもって考察しようとする。	Д
	コラム	〔関〕	
	章末問題		p.153, 154
	(2)		
第6章	第1節 導	関数の応用(14)	
微分法の応	1 接線の	種々の接線の方程式を求めることができる。〔知〕	例題 1,2
用	方程式(3)		応用例題 1
(23)			練習 1~3
		定点 C から曲線に接線を引くとき,接点 A における接線が点 C を	応用例題 1
導関数を用い		 通ると読み替えることができる。〔見〕	(±33 o
て、いろいろ			練習 2
I		接線に直交する条件と、直線の方程式の公式から、法線の方程式の	練習 2 p.159
な曲線の接線			
		接線に直交する条件と、直線の方程式の公式から、法線の方程式の	
な曲線の接線	2 平均値	接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕	p.159
な曲線の接線 の方程式を求	2 平均値 の定理(1)	接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕	p.159 例 2、練習 4
な曲線の接線 の方程式を求 めたり,いろ		接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕 存在定理である平均値の定理に興味をもち、図形的意味を考察し	p.159 例 2、練習 4
な曲線の接線 の方程式を求 めたり,いろ いろな関数の		接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕 存在定理である平均値の定理に興味をもち、図形的意味を考察しようとする。〔関〕	p.159 例 2、練習 4 p.160
な曲線の接線 の方程式を求 めたり、いろ いろな関数の 値の増減、極		接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕 存在定理である平均値の定理に興味をもち、図形的意味を考察しようとする。〔関〕 平均値の定理を利用して、不等式を証明する方法を理解している。	p.159 例 2、練習 4 p.160 応用例題 2
な曲線の接線 の方程式を求めたり、いろ いろな関数の 値の増減、極 大・極小,グラ		接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕 存在定理である平均値の定理に興味をもち、図形的意味を考察しようとする。〔関〕 平均値の定理を利用して、不等式を証明する方法を理解している。 〔知〕	p.159 例 2、練習 4 p.160 応用例題 2 練習 6
な曲線の接線 の方程式を求 めたり,いろ いろな関数の 値の増減,極 大・極小,グラ フの凹凸など		接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕 存在定理である平均値の定理に興味をもち、図形的意味を考察しようとする。〔関〕 平均値の定理を利用して、不等式を証明する方法を理解している。 〔知〕 不等式の形から、平均値の定理を利用するための関数および区間	p.159 例 2、練習 4 p.160 応用例題 2 練習 6 応用例題 2
な曲線の接線 の方程式を求 めたり,いろ 関数,いる 値の増減,がなり フの凹べ を調べ を調べ を調べ	の定理(1)	接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕 存在定理である平均値の定理に興味をもち、図形的意味を考察しようとする。〔関〕 平均値の定理を利用して、不等式を証明する方法を理解している。〔知〕 不等式の形から、平均値の定理を利用するための関数および区間を考察することができる。〔技〕	p.159 例 2、練習 4 p.160 応用例題 2 練習 6 応用例題 2 練習 6
な曲線の接線の方とのでは、いかでは、いかでは、いかでは、いかでは、いかでは、からなりでは、からないでは、いいでは、いいでは、いいでは、いいでは、いいでは、いいでは、いいでは、	の定理(1)	接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕 存在定理である平均値の定理に興味をもち、図形的意味を考察しようとする。〔関〕 平均値の定理を利用して、不等式を証明する方法を理解している。〔知〕 不等式の形から、平均値の定理を利用するための関数および区間を考察することができる。〔技〕 平均値の定理を利用して「導関数の符号と関数の増減」の関係を証	p.159 例 2、練習 4 p.160 応用例題 2 練習 6 応用例題 2 練習 6
なのかいの値大フを観察のではないのでは、ののでは、ののでは、ののでは、ののでは、ののでは、ののでは、ののでは、	の定理(1) 3 関数の 値の変化	接線に直交する条件と、直線の方程式の公式から、法線の方程式の公式を考えることができる。〔見〕 種々の法線の方程式を求めることができる。〔知〕 存在定理である平均値の定理に興味をもち、図形的意味を考察しようとする。〔関〕 平均値の定理を利用して、不等式を証明する方法を理解している。〔知〕 不等式の形から、平均値の定理を利用するための関数および区間を考察することができる。〔技〕 平均値の定理を利用して「導関数の符号と関数の増減」の関係を証明する方法を、理解することができる。〔見〕	p.159 例 2、練習 4 p.160 応用例題 2 練習 6 応用例題 2 練習 6 p.162

関数の極大値・極小値や最大値・最小値を調べる際に、増減表をか 例題 3~5 いて考察している。〔技〕 応用例題3,4、 練習8~12 f'(a) = 0 は、f(a)が極値であるための必要条件ではあるが、十分 p.164 条件ではないことを理解している。〔知〕 f(x)が x=a で微分可能でなくても、f(a)が極値となることがある 応用例題3 ことを理解している。〔知〕 練習 10 関数の極値が与えられたとき、必要十分条件に注意して関数を決 応用例題4 定することができる。〔技〕〔知〕 練習 11 導関数を利用して、関数の最大値・最小値を求めることができる。 例題5 (知) 練習 12 関数の増減, 凹凸, 変曲点, 漸近線, 定義域, 4 関数の 例題 6,7 グラフ(4) x→±∞のときの状態などを調べてグラフをかくことができる。 練習 14, 15 〔技〕 導関数,第2次導関数を利用して,関数のグラフをかくことがで 例題 6,7 きる。〔知〕 練習 14, 15 第2次導関数と極値の関係を理解し、第2次導関数を利用して極 例 5、例題 8 値を求めることができる。〔知〕 練習 16 補充問題 【レポート】「3次関数のグラフの特徴」 p.175 コラ (1) 3 次関数のグラフの特徴に興味をもち、変曲点に関して対称であ コラム ることを示そうとする。〔関〕 第2節 いろいろな応用(7) 方 程 方程式や不等式を関数的視点でとらえ、解決しようとする。〔関〕 応用例題5,6、 式,不等 練習 17, 18 式への 不等式 $f(x) \ge 0$ を,関数 y=f(x) の値域が 0 以上と読み替えること 応用例題 5 心 用 ができる。〔技〕 練習 17 (2) 応用例題 5 導関数を利用して,不等式を証明することができる。〔知〕 練習 17 方程式 f(x) = a の実数解の個数を、関数 y = f(x) のグラフと直線 y応用例題 6 =aの共有点の個数に読み替えて考察できる。〔見〕〔技〕 練習 18 6 速度と 導関数の意味から、点の位置を表す関数の導関数が速度、第2次 p.178 加速度(3) 導関数が加速度を表すことを理解できる。〔見〕 直線上を運動する点の速度・加速度を基に, 平面上を運動する点の p.179, 180 速度・加速度を考察する。〔関〕〔見〕 直線上や平面上を運動する点の速度、速さ、加速度の定義を理解 例題 9,10 し、点の座標が与えられたときにそれらを求めることができる。 練習 19, 20 〔技〕〔知〕 等速円運動の定義を理解し,等速円運動をしている点の速度,加速 例題 10 度を求めることができる。〔知〕 練習 20 近似式 微分係数の意味と図形的な意味から、関数の近似式を考察するこ p.182, 183 (1) とができる。〔関〕〔見〕

11

ı	ı		1		1	1
				導関数を利用して,種々の関数の近似式を作り,近似値を求めるこ	例題 11	
				とができる。〔技〕〔知〕	練習 22, 23	期
			補充問題	【レポート】「e×を表す式」、e×のマクローリン展開に興味をもち,	p.184 コラ	末
			(1) コラム	考察しようとする。〔関〕	Д	考
			章末問題(2		p.185, 186	查
		第7章	第1節 不	定積分(10)		
	12	積分法とそ	1 不定積	積分法が微分法の逆演算であることから、不定積分を求めようと	p.188 ~	
	月	の応用	分とそ	する。〔関〕	191	
		(38)	の基本	微分法の逆演算として,不定積分を計算することができる。〔技〕	例 1~4	
			性 質	〔見〕	練習 1~3	
		積分法につい	(3)	不定積分の定義や性質を理解し,それを利用して種々の関数の不	例 1~4	
		ての理解を深		定積分を計算できる。〔知〕	練習 1~3	
		めるととも		不定積分の計算では,積分定数を書き漏らさずに示すことができ	p.188 ~	
		に、その有用		る。〔技〕	191	
		性を認識し,	2 置換積	簡単に不定積分の計算ができないとき、被積分関数の特徴から置	p.192 ~	
		事象の考察に	分法と	換積分や部分積分を利用しようとする。〔関〕	196	
		活用できるよ	部分積	合成関数の微分の逆演算として、置換積分法を理解することがで	p.192, 193	
		うにする。	分 法	きる。〔見〕		
			(4)	積の微分の逆演算として、部分積分法を理解することができる。	p.195, 196	
				〔見〕		
				被積分関数の形の特徴から,置換積分法や部分積分法を利用して,	例 5、例題 1	
				不定積分を求めることができる。〔技〕〔知〕	~4、応用例	
					題 1、練習 4	
					~9	
			3 いろい	様々な工夫によって被積分関数を変形することで,不定積分を求	例題 5, 6	
			ろな関数	めることができる。〔技〕〔知〕	練習 10~	
			の不定積		12	
			分 (2)			
			補充問題	【レポート】「y'=ky を満たす関数 y」	p.199 コラ	
			(1)	微分方程式について興味をもち、微分方程式を解いてみようとす	厶	
			コラム	る。〔関〕		
			第2節 定	積分(12)		
			4 定積分	定積分の定義や性質を理解し、それを利用して種々の関数の定積	例 6, 7	
			とその	分を計算できる。〔知〕	練習 13, 14	
			基本性	絶対値を含む関数の定積分が面積を表していると考えて、定積分	例題 7	
			質(3)	の計算を考察することができる。〔見〕	練習 15	
3	1		5 置換積	定積分の置換積分法では,積分区間の変換に注意して定積分を計	例 8、例題 8	
学	月		分法と	算している。〔技〕	応用例題 2	
期			部分積		練習 16~	
			分 法		18	
			分 法		18	

	(4)	置換積分法を利用して、円の面積を求める公式が数学的にきちん	例題8,補足
		と証明できたことを理解することができる。〔見〕	
		積分区間が原点対称のときの偶関数, 奇関数の定積分の計算を, 図	p.205, 206
		形的に理解することができる。〔見〕	
		偶関数、奇関数の定積分の性質を理解し、積分区間が原点対称のと	例 9,10
		き、それを利用して定積分の計算をすることができる。〔技〕〔知〕	練習 20
		定積分の置換積分法、部分積分法を理解し、それを利用して複雑な	例8、例題8,
		関数の定積分を計算できる。〔知〕	9、応用例題2、
			練習 16~18、
			練習 21
	6 定積分	上端、下端が×である定積分を×の関数とみることができる。〔見〕	応用例題 3
	のいろ		練習 22, 23
	いろな	上端, 下端が変数 x である定積分で表された関数の扱い方を理解	応用例題 3
	問題(4)	している。〔知〕	練習 22, 23
		曲線で囲まれた部分の面積を微少な長方形で近似する積分の基本	p.209, 210
		的な考え方に興味・関心をもつ。〔関〕	
		曲線で囲まれた部分の面積を微少な長方形で近似する考え方で、	練習 24
		定積分と和の極限との関係を考察することができる。〔見〕	
		特別な形をした和の極限を、定積分を利用して計算することがで	応用例題 4
		きる。〔技〕〔知〕	練習 25
		関数の大小とその関数の定積分の大小との関係について理解して	例題 10
		いる。〔知〕	練習 26
		不等式に現れる式の図形的意味を考えることで、定積分を利用し	応用例題 5
		て不等式の証明を考察することができる。〔見〕	練習 27
	補充問題	【レポート】「定積分∫(x-α)²(x-β)dx」	p.214 コラ
	(1)	複雑な定積分を置換積分を利用して計算する方法に興味をもち、	Д
	コラム	取り組もうとする。〔関〕	
	第3節積		
	7 面 積	定積分が、図形の計量に関して有用であることを認識している。	p.215 ~
	(4)	〔見〕	231
		面積を求める際には、グラフの上下関係、積分範囲などを図をかい	p.215 ~
		て考察している。〔技〕	219
		直線や曲線で囲まれた部分の面積を、定積分で表して求めること	p.215 ~
		ができる。〔知〕	219
		媒介変数表示で表された曲線や直線で囲まれた部分の面積を,置	応用例題 7
		換積分の考えで計算して求めることができる。〔技〕	練習 33
	8 体 積	立体の体積を計算するには断面積を表す関数を積分すればよいこ	p.220, 221
	(4)	とに興味・関心をもち、考察しようとする。〔関〕	
		体積 V(x)が断面積 S(x)の1つの不定積分であることに興味・関心	p.220, 221
		をもち、考察しようとする。〔関〕	
			L

			立体の断面積を積分することで体積が求められることを理解し、	例題 14	
			体積を求めることができる。〔見〕〔知〕	応用例題8	学
				練習 34, 35	年
			×軸やy軸を軸とする回転体の断面は円となることを理解し,回転	p.222 ,	末
			体の体積について考察することができる。〔見〕	223, 225	考
			回転体の体積を求める方法を理解し,回転体の体積を求めること	例題 15,16	查
			ができる。〔知〕	応用例題 9	
				練習 36~40	
2	 	9 道のり	数直線上を運動する点の座標,位置の変化量,道のりが定積分を用	p.226, 227	
月		(3)	いて表せることに興味・関心をもち,考察しようとする。〔関〕		
			数直線上を運動する点の座標,道のりを定積分を用いて求めるこ	例 12, 13	
			とができる。〔知〕	練習 41, 42	
			座標平面上の点の座標が媒介変数で表されているとき,点が動く	p.228	
			道のりは,その点が描く曲線の長さに等しいことを理解している。		
			〔見〕		
			座標平面上の点の座標が媒介変数で表されているとき,点が動く	例題 17	
			道のりを定積分を用いて求めることができる。〔見〕〔知〕	練習 43	
		10 曲線	曲線の方程式が媒介変数表示や, y=f(x)の形で与えられていると	p.230, 231	
		の長さ(2)	き、曲線の長さが定積分を用いて表されることに興味・関心をも		
			ち,活用しようとする。〔関〕		
			定積分を用いて、曲線の長さを求めることができる。〔知〕	例題 18, 19	
				練習 44, 45	
		補充問題	【レポート】「こぼれる水の量は?」	p.232 コラ	
		(1)	身近にある体積の問題に興味をもち、具体的な問題に取り組もう	厶	
		コラム	とする。〔関〕		
		章末問題(2)			L
発展の微分が			5程式	p.235, 236	

課題・提出物について

レポートの提出:教科書節末のコラムを題材にしたレポート

授業ノートの提出

授業時に配布するプリントの提出

長期休暇における課題帳

3 評価の観点と評価方法

	関心・意欲・態度	数学的な見方や考え方	数学的な技能	知識•理解
	平面上の曲線と複素数平	事象を数学的に考察し表	平面上の曲線と複素数平	平面上の曲線と複素数平
	面,極限,微分法及び積分	現したり、思考の過程を	面,極限,微分法及び積分	面,極限,微分法及び積分
	法に関心をもつととも	振り返り多面的・発展的	法において, 事象を数学	法における基本的な概
評価の観点	に、それらを事象の考察	に考えたりすることなど	的に表現・処理する仕方	念, 原理・法則などを体系
	に積極的に活用して数学	を通して, 平面上の曲線	や推論の方法などの技術	的に理解し,知識を身に
	的論拠に基づいて判断し	と複素数平面, 極限, 微分	を身に付けている。	付けている。
	ようとする。	法及び積分法における数		
		学的な見方や考え方を身		
		に付けている。		
	・学習活動への取り組み	• 定期考查	• 定期考查	• 定期考查
評価方法	・課題・提出物の状況	・提出レポートの内容	• 小テスト	・小テスト
	ノート, プリント,	・提出ノートの内容		
	レポート等			